第一百七十八章 湍流奇点论证报告,孔采维奇:这是奇迹啊! (第2/2页)
现在就可以直接去台上了。
整个报告厅所有人的注视下,张硕一步步的走到台上,他觉得自己早就习惯了被瞩目的感觉,但真正被全场注视的时候,还是感觉精神有些紧绷。
实际上,主要还是因为消息传了出去。
张硕的计划就只是做一个报告而已,谈一下奇点论证的方向,论证下湍流位置的奇点问题,仅此而已。
现在的情况和预想有些差别,他站在讲台上深吸了一口气,随后才平静下来。
他不急不慢的拿出了资料,随后操作下电脑,然后就稳稳的站在那里,还不时的低头看一下时间。
终于,时间到了。
张硕朝着全场点了下头,随着他的动作嘈杂声顿时变小了,原本因为讨论带来的纷乱快速压了下来。
在所有人的注视下,荧幕上出现了报告的标题——
《NS方程:湍流转变的奇点论证》。
张硕紧跟着开口道,“湍流问题就不用介绍了,我们直接进入正题。”
“论证从二维NS方程解集映射入手。”
这一句话,让报告厅彻底安静下来。
好多人都听的愣住了。
从数学角度论证NS方程的奇点问题,最难的地方就是寻找入手点,因为方程的复杂性,大多数论证都是从弱解入手。
从弱解入手,就很难联系‘奇点’问题。
张硕的报告刚开头就给人带来了惊喜——二维映射。
这是很多学者能想到,却从来没有一个研究能做到的入手点。
张硕谈起二维解集映射,荧幕也翻到了下一页并进入正题中,“前苏国著名女数学家拉德斯卡娅,证明了二维NS方程的正则性。”
“二维NS方程,是特定取值下三维NS方程的投影。”
“我的方法是以三维NS方程投影的角度去论证,设定一个和二维NS方程所在面相交的平面H……”
“一个解,在两个相交面的投影都是存在的、唯一的,也就证明了解的存在性以及唯一性……”
“同理,一个解集的投影,在两个相交面投影具有光滑性特征,也就代表解集本身的光滑性。”
“湍流转变位置上,我们可以取值……”
“设定方程的边界……”
张硕早就在脑子里整理过思路,他对于证明方法做了一个简述以后,就快速进入了论证正题中。
报告厅里,每个人都听的很认真。
所有人都看着荧幕上的证明过程,仔细听不放过任何一个细节,但还是有很多人跟不上节奏。
张硕的证明方向很明确,证明过程也并不多,放在一起也只有几页资料,研究的也只是湍流转变位置附近的解集问题,也就是研究‘特殊数值代入’、特殊边界的情况。
这是对NS方程‘特例’的研究,相对于大范围取值论证就简单多了。
但是,其中包含的论证逻辑,一行行推导的难度却很高,想理解并不是那么容易。
证明过程,包含了函数论、几何学,还有一小部分是代数几何方法,涉及的领域有点多,就增加了理解的难度。
本特-尼尔森从事的是应用数学领域的研究,他就是很快跟不上节奏的人之一。
报告只进行了十分钟,他就已经听不懂了,扭过头问向旁边的鲍勃-詹姆斯,“你听懂了吗?”
鲍勃-詹姆斯抿了抿嘴,他继续注视着台上,好半天才开口道,“如果我都能听明白,我一定会说:‘请闭嘴’!”
他说着自己都笑了。
“真是不敢相信。”
鲍勃-詹姆斯摇了摇头,继续道,“函数、几何学,甚至是代数几何?我只知道这些方法,但不理解。”
“这个研究涉猎的范围有些广……”
他感慨着。
数学的分支学科有很多,大部分学者都会选择单一的方向进行研究。
有些学者能涉猎多个领域,但一般都是上了年纪,单方向的领域上发现已经无法再进步,才会去研究其他领域,一则是找个新方向,另一方面,也希望拓展领域来对原来的研究方向有增益。
张硕才只有26岁,他的年纪太小了,做一个研究怎么会涉及这么多领域?
即便不是专业做研究,只是知道那些方法并应用也很了不起。
跨行如隔山,并不只是说说的。
在不同数学领域上,顶尖学者也许都比不上博士生的水平。
当然也有学者能跟上节奏。
比如,安东-卡普斯汀。
安东-卡普斯汀是偏微分方程领域的知名学者,他一直很认真的听着讲解,还用笔不断做着记录。
就像是鲍勃-詹姆斯的形容,真正听懂的人生怕受到一点点的打扰。
卡普斯汀听的极为专注。
当张硕完成了论证的‘铺垫’,进入到两个二维解集对照的时候,证明过程就变得清晰起来。
这也让听懂的学者思路变得清晰。
安东-卡普斯汀轻呼一口气,他手上继续做着记录,脸上已经露出了笑容。
后面的部分不用继续听了。
报告到了这里,他已经能肯定证明是正确的。
那些听懂的人都同样的感觉。
菲尔兹获奖者,也是三号厅评审之一的马克西姆-孔采维奇就坐在第一排,他和卡普斯汀露出了同样的笑容。
旁边有个人注意到孔采维奇的笑容,顿时问道,“怎么样?”
“没问题了。”
孔采维奇很确定的说道,“后面不用继续听了,证明已经结束了。”
“是对的?”
“当然。”
孔采维奇笑道,“我记得,张硕投给《数学新进展》的论文,我做过评审,现在数学家大会,我又是评审。”
“从二阶偏微分方程的通用算法,到NS方程的奇点论证,仅仅一年多……”
“这是奇迹啊!”
孔采维奇感叹的说道。
讲解已经到了最后部分,后面的总结出现在了荧幕上。
张硕完成了最后的讲解,并做出了总结,“综合以上的结论,我们可以确定,湍流转变位置的解是以指数型增大的,而且非常密集,但并不存在跳转的奇点,解集依旧具有存在性、唯一性以及光滑性!”
话音落下时,报告厅安静了一瞬。
孔采维奇当地站了起来,伸出双手用力的拍在一起。
一下。
两下……
几个听懂过程的学者,也包括安东-卡普斯汀,都一起站起来鼓起了掌。
掌声迅速响成一片,并很快占满整个报告厅。